Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Stimul ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734066

RESUMO

BACKGROUND: Transcranial ultrasound stimulation (TUS) is a non-invasive brain stimulation technique; when skull aberrations are compensated for, this technique allows, with millimetric accuracy, circumvention of the invasive surgical procedure associated with deep brain stimulation (DBS) and the limited spatial specificity of transcranial magnetic stimulation. OBJECTIVE: /hypothesis: We hypothesize that MR-guided low-power TUS can induce a sustained decrease of tremor power in patients suffering from medically refractive essential tremors. METHODS: The dominant hand only was targeted, and two anatomical sites were sonicated in this exploratory study: the ventral intermediate nucleus of the thalamus (VIM) and the dentato-rubro-thalamic tract (DRT). Patients (N=9) were equipped with MR-compatible accelerometers attached to their hands to monitor their tremor in real-time during TUS. RESULTS: VIM neurostimulations followed by a low-duty cycle (5%) DRT stimulation induced a substantial decrease in the tremor power in four patients, with a minimum of 89.9% reduction when compared with the baseline power a few minutes after the DRT stimulation. The only patient stimulated in the VIM only and with a low duty cycle (5%) also experienced a sustained reduction of the tremor (up to 93.4%). Four patients (N=4) did not respond. The temperature at target was 37.2 ± 1.4°C compared to 36.8 ± 1.4°C for a 3cm away control point. CONCLUSIONS: MR-guided low power TUS can induce a substantial and sustained decrease of tremor power. Follow-up studies need to be conducted to reproduce the effect and better to understand the variability of the response amongst patients. MR thermometry during neurostimulations showed no significant thermal rise, supporting a mechanical effect.

2.
Brain Commun ; 6(2): fcae105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601915

RESUMO

Non-motor aspects in dystonia are now well recognized. The sense of agency, which refers to the experience of controlling one's own actions, has been scarcely studied in dystonia, even though its disturbances can contribute to movement disorders. Among various brain structures, the cerebral cortex, the cerebellum, and the basal ganglia are involved in shaping the sense of agency. In myoclonus dystonia, resulting from a dysfunction of the motor network, an altered sense of agency may contribute to the clinical phenotype of the condition. In this study, we compared the explicit and implicit sense of agency in patients with myoclonus dystonia caused by a pathogenic variant of SGCE (DYT-SGCE) and control participants. We utilized behavioural tasks to assess the sense of agency and performed neuroimaging analyses, including structural, resting-state functional connectivity, and dynamic causal modelling, to explore the relevant brain regions involved in the sense of agency. Additionally, we examined the relationship between behavioural performance, symptom severity, and neuroimaging findings. We compared 19 patients with DYT-SGCE and 24 healthy volunteers. Our findings revealed that patients with myoclonus-dystonia exhibited a specific impairment in explicit sense of agency, particularly when implicit motor learning was involved. However, their implicit sense of agency remained intact. These patients also displayed grey-matter abnormalities in the motor cerebellum, as well as increased functional connectivity between the cerebellum and pre-supplementary motor area. Dynamic causal modelling analysis further identified reduced inhibitory effects of the cerebellum on the pre-supplementary motor area, decreased excitatory effects of the pre-supplementary motor area on the cerebellum, and increased self-inhibition within the pre-supplementary motor area. Importantly, both cerebellar grey-matter alterations and functional connectivity abnormalities between the cerebellum and pre-supplementary motor area were found to correlate with explicit sense of agency impairment. Increased self-inhibition within the pre-supplementary motor area was associated with less severe myoclonus symptoms. These findings highlight the disruption of higher-level cognitive processes in patients with myoclonus-dystonia, further expanding the spectrum of neurological and psychiatric dysfunction already identified in this disorder.

3.
Brain ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38620012

RESUMO

Reading acquisition modifies areas of the brain associated with vision, with language, and their connections. Those changes enable reciprocal translation between orthography, and word sounds and meaning. Individual variability in the pre-existing cerebral substrate contributes to the range of eventual reading abilities, extending to atypical developmental patterns, including dyslexia and reading-related synesthesias. The present study is devoted to the little-studied but highly informative ticker-tape synesthesia (TTS), in which speech perception triggers the vivid and irrepressible perception of words in their written form in the mind's eye. We scanned a group of 17 synesthetes and 17 matched controls with functional MRI, while they listened to spoken sentences, words, numbers, or pseudowords (Experiment 1), viewed images and written words (Experiment 2), and were at rest (Experiment 3). First, we found direct correlates of the TTS phenomenon: during speech perception, as TTS was active, synesthetes showed over-activation of left perisylvian regions supporting phonology, and of the occipitotemporal Visual Word Form Area (VWFA), where orthography is represented. Second, we brought support to the hypothesis that TTS results from atypical relationships between spoken and written language processing: the TTS-related regions overlap closely with cortices activated during reading, and the overlap of speech-related and reading-related areas is larger in synesthetes than in controls. Furthermore the regions over-activated in TTS overlap with regions under-activated in dyslexia. Third, during resting state, that is in the absence of current TTS, synesthetes showed increased functional connectivity between left prefrontal and bilateral occipital regions. This pattern may reflect a lowered threshold for conscious access to visual mental contents, and may implement a non-specific predisposition to all synesthesias with a visual content. Those data provide a rich and coherent account of TTS as a non-detrimental developmental condition created by the interaction of reading acquisition with an atypical cerebral substrate.

4.
Trials ; 24(1): 783, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049806

RESUMO

BACKGROUND: Focal brain lesions following a stroke of the middle cerebral artery induce large-scale network disarray with a potential to impact multiple cognitive and behavioral domains. Over the last 20 years, non-invasive brain neuromodulation via electrical (tCS) stimulation has shown promise to modulate motor deficits and contribute to recovery. However, weak, inconsistent, or at times heterogeneous outcomes using these techniques have also highlighted the need for novel strategies and the assessment of their efficacy in ad hoc controlled clinical trials. METHODS: We here present a double-blind, sham-controlled, single-center, randomized pilot clinical trial involving participants having suffered a unilateral middle cerebral artery (MCA) stroke resulting in motor paralysis of the contralateral upper limb. Patients will undergo a 10-day regime (5 days a week for 2 consecutive weeks) of a newly designed high-definition transcranial direct current stimulation (HD-tDCS) protocol. Clinical evaluations (e.g., Fugl Meyer, NIHSS), computer-based cognitive assessments (visuo-motor adaptation and AX-CPT attention tasks), and electroencephalography (resting-state and task-evoked EEG) will be carried out at 3 time points: (I) Baseline, (II) Post-tDCS, and (III) Follow-up. The study consists of a four-arm trial comparing the impact on motor recovery of three active anodal tDCS conditions: ipsilesional DLPFC tDCS, contralesional cerebellar tDCS or combined DLPFC + contralesional cerebellar tDCS, and a sham tDCS intervention. The Fugl-Meyer Assessment for the upper extremity (FMA-UE) is selected as the primary outcome measure to quantify motor recovery. In every stimulation session, participants will receive 20 min of high-density tDCS stimulation (HD-tDCS) (up to 0.63 mA/[Formula: see text]) with [Formula: see text] electrodes. Electrode scalp positioning relative to the cortical surface (anodes and cathodes) and intensities are based on a biophysical optimization model of current distribution ensuring a 0.25 V/m impact at each of the chosen targets. DISCUSSION: Our trial will gauge the therapeutic potential of accumulative sessions of HD-tDCS to improve upper limb motor and cognitive dysfunctions presented by middle cerebral artery stroke patients. In parallel, we aim at characterizing changes in electroencephalographic (EEG) activity as biomarkers of clinical effects and at identifying potential interactions between tDCS impact and motor performance outcomes. Our work will enrich our mechanistic understanding on prefrontal and cerebellar contributions to motor function and its rehabilitation following brain damage. TRIAL REGISTRATION: ClinicalTrials.gov NCT05329818. April 15, 2022.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia , Reabilitação do Acidente Vascular Cerebral/métodos , Método Duplo-Cego , Extremidade Superior , Infarto da Artéria Cerebral Média , Cognição , Recuperação de Função Fisiológica , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Mov Disord ; 38(7): 1187-1196, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148555

RESUMO

BACKGROUND: Cervical dystonia (CD) is a form of isolated focal dystonia typically associated to abnormal head, neck, and shoulder movements and postures. The complexity of the clinical presentation limits the investigation of its pathophysiological mechanisms, and the neural networks associated to specific motor manifestations are still the object of debate. OBJECTIVES: We investigated the morphometric properties of white matter fibers in CD and explored the networks associated with motor symptoms, while regressing out nonmotor scores. METHODS: Nineteen patients affected by CD and 21 healthy controls underwent diffusion-weighted magnetic resonance imaging. We performed fixel-based analysis, a novel method evaluating fiber orientation within specific fiber bundles, and compared fiber morphometric properties between groups. Moreover, we correlated fiber morphometry with the severity of motor symptoms in patients. RESULTS: Compared to controls, patients exhibited decreased white matter fibers in the right striatum. Motor symptom severity negatively correlated with white matter fibers passing through inferior parietal areas and the head representation area of the motor cortex. CONCLUSIONS: Abnormal white matter integrity at the basal ganglia level may affect several functional networks involved, for instance, in motor preparation and execution, visuomotor coordination, and multimodal integration. This may result in progressive maladaptive plasticity, culminating in overt symptoms of dystonia. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos , Torcicolo , Substância Branca , Humanos , Torcicolo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo , Distúrbios Distônicos/diagnóstico por imagem
6.
Psychol Med ; 53(6): 2361-2369, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35135638

RESUMO

BACKGROUND: Tourette disorder (TD), hallmarks of which are motor and vocal tics, has been related to functional abnormalities in large-scale brain networks. Using a fully data driven approach in a prospective, case-control study, we tested the hypothesis that functional connectivity of these networks carries a neural signature of TD. Our aim was to investigate (i) the brain networks that distinguish adult patients with TD from controls, and (ii) the effects of antipsychotic medication on these networks. METHODS: Using a multivariate analysis based on support vector machine (SVM), we developed a predictive model of resting state functional connectivity in 48 patients and 51 controls, and identified brain networks that were most affected by disease and pharmacological treatments. We also performed standard univariate analyses to identify differences in specific connections across groups. RESULTS: SVM was able to identify TD with 67% accuracy (p = 0.004), based on the connectivity in widespread networks involving the striatum, fronto-parietal cortical areas and the cerebellum. Medicated and unmedicated patients were discriminated with 69% accuracy (p = 0.019), based on the connectivity among striatum, insular and cerebellar networks. Univariate approaches revealed differences in functional connectivity within the striatum in patients v. controls, and between the caudate and insular cortex in medicated v. unmedicated TD. CONCLUSIONS: SVM was able to identify a neuronal network that distinguishes patients with TD from control, as well as medicated and unmedicated patients with TD, holding a promise to identify imaging-based biomarkers of TD for clinical use and evaluation of the effects of treatment.


Assuntos
Síndrome de Tourette , Adulto , Humanos , Síndrome de Tourette/diagnóstico por imagem , Síndrome de Tourette/tratamento farmacológico , Estudos de Casos e Controles , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Cerebelo , Imageamento por Ressonância Magnética , Vias Neurais , Mapeamento Encefálico
7.
Sci Adv ; 8(5): eabl4294, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119928

RESUMO

Associative theories of creativity argue that creative cognition involves the abilities to generate remote associations and make useful connections between unrelated concepts in one's semantic memory. Yet, whether and how real-life creative behavior relies on semantic memory structure and its neural substrates remains unclear. We acquired multi-echo functional magnetic resonance imaging data while participants underwent a semantic relatedness judgment task. These ratings were used to estimate their individual semantic memory networks, whose properties significantly predicted their real-life creativity. Using a connectome predictive modeling approach, we identified patterns of task-based functional connectivity that predicted creativity-related semantic memory network properties. Furthermore, these properties mediated the relationship between functional connectivity and real-life creativity. These results provide new insights into how brain connectivity patterns support real-life creative behavior via the structure of semantic memory. We also show how computational network science can be used to couple behavioral, cognitive, and neural levels of analysis.

8.
Neurology ; 98(10): e1077-e1089, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35058336

RESUMO

BACKGROUND AND OBJECTIVES: The main culprit gene for paroxysmal kinesigenic dyskinesia, characterized by brief and recurrent attacks of involuntary movements, is PRRT2. The location of the primary dysfunction associated with paroxysmal dyskinesia remains a matter of debate and may vary depending on the etiology. While striatal dysfunction has often been implicated in these patients, evidence from preclinical models indicates that the cerebellum could also play a role. We aimed to investigate the role of the cerebellum in the pathogenesis of PRRT2-related dyskinesia in humans. METHODS: We enrolled 22 consecutive right-handed patients with paroxysmal kinesigenic dyskinesia with a pathogenic variant of PRRT2 and their matched controls. Participants underwent a multimodal neuroimaging protocol. We recorded anatomic and diffusion-weighted MRI, as well as resting-state fMRI, during which we tested the aftereffects of sham and repetitive transcranial magnetic stimulation applied to the cerebellum on endogenous brain activity. We quantified the structural integrity of gray matter using voxel-based morphometry, the structural integrity of white matter using fixel-based analysis, and the strength and direction of functional cerebellar connections using spectral dynamic causal modeling. RESULTS: Patients with PRRT2 had decreased gray matter volume in the cerebellar lobule VI and in the medial prefrontal cortex, microstructural alterations of white matter in the cerebellum and along the tracts connecting the cerebellum to the striatum and the cortical motor areas, and dysfunction of cerebellar motor pathways to the striatum and the cortical motor areas, as well as abnormal communication between the associative cerebellum (Crus I) and the medial prefrontal cortex. Cerebellar stimulation modulated communication within the motor and associative cerebellar networks and tended to restore this communication to the level observed in healthy controls. DISCUSSION: Patients with PRRT2-related dyskinesia have converging structural alterations of the motor cerebellum and related pathways with a dysfunction of cerebellar output toward the cerebello-thalamo-striato-cortical network. We hypothesize that abnormal cerebellar output is the primary dysfunction in patients with a PRRT2 pathogenic variant, resulting in striatal dysregulation and paroxysmal dyskinesia. More broadly, striatal dysfunction in paroxysmal dyskinesia might be secondary to aberrant cerebellar output transmitted by thalamic relays in certain disorders. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov identifier: NCT03481491.


Assuntos
Doenças Cerebelares , Coreia , Distonia , Cerebelo/patologia , Coreia/diagnóstico por imagem , Coreia/genética , Distonia/diagnóstico por imagem , Distonia/genética , Distonia/metabolismo , Humanos , Imageamento por Ressonância Magnética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
9.
Parkinsonism Relat Disord ; 94: 30-36, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875561

RESUMO

INTRODUCTION: Cervical dystonia is the most frequent form of isolated focal dystonia. It is often associated with a dysfunction in brain networks, mostly affecting the basal ganglia, the cerebellum, and the somatosensory cortex. However, it is unclear if such a dysfunction is somato-specific to the brain areas containing the representation of the affected body part, and may thereby account for the focal expression of cervical dystonia. In this study, we investigated resting state functional connectivity in the areas within the motor cortex and the cerebellum containing affected and non-affected body representations in cervical dystonia patients. METHODS: Eighteen patients affected by cervical dystonia and 21 healthy controls had resting state fMRI. The functional connectivity between the motor cortex and the cerebellum, as well as their corresponding measures of gray matter volume and cortical thickness, were compared between groups. We performed seed-based analyses, selecting the different body representation areas in the precentral gyrus as seed regions, and all cerebellar areas as target regions. RESULTS: Compared to controls, patients exhibited increased functional connectivity between the bilateral trunk representation area of the motor cortex and the cerebellar vermis 6 and 7b, respectively. These functional abnormalities did not correlate with structural changes or symptom severity. CONCLUSIONS: Our findings indicate that the abnormal function of the motor network is somato-specific to the areas encompassing the neck representation. Functional abnormalities in discrete relevant areas of the motor network could thus contribute to the focal expression of CD.


Assuntos
Distúrbios Distônicos , Torcicolo , Gânglios da Base , Cerebelo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Torcicolo/diagnóstico por imagem
10.
Transl Psychiatry ; 11(1): 560, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732691

RESUMO

Reward sensitivity has been suggested as one of the central pathophysiological mechanisms in Tourette disorder. However, the subjective valuation of a reward by introduction of delay has received little attention in Tourette disorder, even though it has been suggested as a trans-diagnostic feature of numerous neuropsychiatric disorders. We aimed to assess delay discounting in Tourette disorder and to identify its brain functional correlates. We evaluated delayed discounting and its brain functional correlates in a large group of 54 Tourette disorder patients and 31 healthy controls using a data-driven approach. We identified a subgroup of 29 patients with steeper reward discounting, characterised by a higher burden of impulse-control disorders and a higher level of general impulsivity compared to patients with normal behavioural performance or to controls. Reward discounting was underpinned by resting-state activity of a network comprising the orbito-frontal, cingulate, pre-supplementary motor area, temporal and insular cortices, as well as ventral striatum and hippocampus. Within this network, (i) lower connectivity of pre-supplementary motor area with ventral striatum predicted a higher impulsivity and a steeper reward discounting and (ii) a greater connectivity of pre-supplementary motor area with anterior insular cortex predicted steeper reward discounting and more severe tics. Overall, our results highlight the heterogeneity of the delayed reward processing in Tourette disorder, with steeper reward discounting being a marker of burden in impulsivity and impulse control disorders, and the pre-supplementary motor area being a hub region for the delay discounting, impulsivity and tic severity.


Assuntos
Desvalorização pelo Atraso , Síndrome de Tourette , Humanos , Comportamento Impulsivo , Córtex Insular , Imageamento por Ressonância Magnética , Recompensa
11.
Cereb Cortex ; 32(1): 216-230, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34590113

RESUMO

Action selection refers to the decision regarding which action to perform in order to reach a desired goal, that is, the "what" component of intention. Whether the action is freely chosen or externally instructed involves different brain networks during the selection phase, but it is assumed that the way an action is selected should not influence the subsequent execution phase of the same movement. Here, we aim to test this hypothesis by investigating whether the modality of movement selection influences the brain networks involved during the execution phase of the movement. Twenty healthy volunteers performed a delayed response task in an event-related functional magnetic resonance imaging design to compare freely chosen and instructed unimanual or bimanual movements during the execution phase. Using activation analyses, we found that the pre-supplementary motor area (preSMA) and the parietal and cerebellar areas were more activated during the execution phase of freely chosen as compared to instructed movements. Connectivity analysis showed an increase of information flow between the right posterior parietal cortex and the cerebellum for freely chosen compared to instructed movements. We suggest that the parieto-cerebellar network is particularly engaged during freely chosen movement to monitor the congruence between the intentional content of our actions and their outcome.


Assuntos
Mapeamento Encefálico , Desempenho Psicomotor , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Movimento/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia
12.
Mol Psychiatry ; 26(7): 3548-3557, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32994553

RESUMO

Tourette disorder (TD), which is characterized by motor and vocal tics, is not in general considered as a product of impulsivity, despite a frequent association with attention deficit hyperactivity disorder and impulse control disorders. It is unclear which type of impulsivity, if any, is intrinsically related to TD and specifically to the severity of tics. The waiting type of motor impulsivity, defined as the difficulty to withhold a specific action, shares some common features with tics. In a large group of adult TD patients compared to healthy controls, we assessed waiting motor impulsivity using a behavioral task, as well as structural and functional underpinnings of waiting impulsivity and tics using multi-modal neuroimaging protocol. We found that unmedicated TD patients showed increased waiting impulsivity compared to controls, which was independent of comorbid conditions, but correlated with the severity of tics. Tic severity did not account directly for waiting impulsivity, but this effect was mediated by connectivity between the right orbito-frontal cortex with caudate nucleus bilaterally. Waiting impulsivity in unmedicated patients with TD also correlated with a higher gray matter signal in deep limbic structures, as well as connectivity with cortical and with cerebellar regions on a functional level. Neither behavioral performance nor structural or functional correlates were related to a psychometric measure of impulsivity or impulsive behaviors in general. Overall, the results suggest that waiting impulsivity in TD was related to tic severity, to functional connectivity of orbito-frontal cortex with caudate nucleus and to structural changes within limbic areas.


Assuntos
Transtornos de Tique , Tiques , Síndrome de Tourette , Adulto , Humanos , Comportamento Impulsivo , Redes Neurais de Computação
13.
J Psychiatr Res ; 125: 1-6, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32169732

RESUMO

BACKGROUND: Intermittent explosive outbursts (IEO), manifesting as sudden episodes of verbal or physical aggression, are frequently present in patients with Tourette disorder (TD) and considered as one of the most disabling symptoms by patients and families. The neuronal correlates of these behaviours are poorly understood, and this was the primary objective of the present study. METHODS: We assessed the presence of IEO in 55 patients with TD and then compared the subgroup of the patients with IEO to those without these manifestations using a multimodal neuroimaging approach. RESULTS: 47% of TD patients presented IEO, which was frequently associated with attention deficit hyperactivity disorder (ADHD). TD patients (without ADHD) with IEO compared to TD without IEO, showed structural changes in the right supplementary motor area as well as in the right hippocampus (increased fractional anisotropy), and in the left orbitofrontal cortex (decreased mean diffusivity). Using these three nodes as seeds for resting state functional connectivity, we showed a lower connectivity within the sensori-motor cortico-basal ganglia network, and an altered connectivity pattern among the orbito-frontal cortex, amygdala and hippocampus. CONCLUSIONS: Overall, our results indicate that TD with IEO is associated with brain dysfunction related to a less efficient top-down control on action selection, and impairments related to emotional regulation, impulse control and aggressive behaviours.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Substâncias Explosivas , Síndrome de Tourette , Agressão , Tonsila do Cerebelo , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Síndrome de Tourette/diagnóstico por imagem
14.
Cortex ; 125: 60-72, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31978743

RESUMO

Abnormality of inhibitory control is considered to be a potential cognitive marker of tics in Tourette disorder (TD), attention deficit hyperactivity disorder (ADHD), and impulse control disorders. The results of the studies on inhibitory control in TD showed discrepant results. The aim of the present study was to assess reactive inhibitory control in adult TD patients with and without antipsychotic medication, and under emotional stimulation (visual images with positive, neutral and negative content). We assessed 31 unmedicated and 19 medicated TD patients and 26 matched healthy controls using the stop signal task as an index of reactive motor impulsivity and emotional stimulation with the aim to increase impulsivity. We performed a multimodal neuroimaging analysis using a regions of interest approach on grey matter signal, resting-state spontaneous brain activity and functional connectivity analyses. We found a higher reactive motor impulsivity in TD patients medicated with antipsychotics compared to unmedicated TD patients and controls. This propensity for reactive motor impulsivity in medicated TD patients was not influenced by ADHD or emotional stimulation. Neuroimaging results in medicated TD patients suggested that reactive motor impulsivity was underpinned by an increased grey matter signal from the right supplementary motor area and inferior frontal gyrus; decreased resting-state spontaneous activity of the left putamen; higher functional connectivity between the inferior frontal gyrus and the superior temporal gyri (bilaterally); lower functional connectivity between the cerebellum and the right subthalamic nucleus. Taken together, our data suggested (i) a deficit in reactive motor impulsivity in TD patients medicated with atypical antipsychotics that was unrelated to ADHD and (ii) that motor impulsivity was underpinned by structures and by functional connectivity of the fronto-temporo-basal ganglia-cerebellar pathway.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Síndrome de Tourette , Adulto , Humanos , Comportamento Impulsivo , Imageamento por Ressonância Magnética , Neuroimagem , Síndrome de Tourette/diagnóstico por imagem , Síndrome de Tourette/tratamento farmacológico
15.
Hum Brain Mapp ; 40(7): 2125-2142, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30653778

RESUMO

The execution of coordinated hand movements requires complex interactions between premotor and primary motor areas in the two hemispheres. The supplementary motor area (SMA) is involved in movement preparation and bimanual coordination. How the SMA controls bimanual coordination remains unclear, although there is evidence suggesting that the SMA could modulate interhemispheric interactions. With a delayed-response task, we investigated interhemispheric interactions underlying normal movement preparation and the role of the SMA in these interactions during the delay period of unimanual or bimanual hand movements. We used functional MRI and transcranial magnetic stimulation in 22 healthy volunteers (HVs), and then in two models of SMA dysfunction: (a) in the same group of HVs after transient disruption of the right SMA proper by continuous transcranial magnetic theta-burst stimulation; (b) in a group of 22 patients with congenital mirror movements (CMM), whose inability to produce asymmetric hand movements is associated with SMA dysfunction. In HVs, interhemispheric connectivity during the delay period was modulated according to whether or not hand coordination was required for the forthcoming movement. In HVs following SMA disruption and in CMM patients, interhemispheric connectivity was modified during the delay period and the interhemispheric inhibition was decreased. Using two models of SMA dysfunction, we showed that the SMA modulates interhemispheric interactions during movement preparation. This unveils a new role for the SMA and highlights its importance in coordinated movement preparation.


Assuntos
Lateralidade Funcional/fisiologia , Intenção , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Potencial Evocado Motor/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/diagnóstico por imagem , Transtornos dos Movimentos/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
16.
Ann Clin Transl Neurol ; 5(7): 788-802, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30009197

RESUMO

BACKGROUND AND OBJECTIVE: Neurovascular coupling is the complex biological process that underlies use-dependent increases in blood flow in response to neural activation. Neurovascular coupling was investigated at the early stage of CADASIL, a genetic paradigm of ischemic small vessel disease. METHODS: Functional hyperemia and evoked potentials during 20- and 40-sec visual and motor stimulations were monitored simultaneously using arterial spin labeling-functional magnetic resonance imaging (ASL-fMRI) and electroencephalography. RESULTS: Cortical functional hyperemia differed significantly between 19 patients and 19 healthy individuals, whereas evoked potentials were unaltered. Functional hyperemia dynamics, assessed using the difference in the slope of the response curve between 15 and 30 sec, showed a time-shifted decrease in the response to 40-sec neural stimulations in CADASIL patients. These results were replicated in a second cohort of 10 patients and 10 controls and confirmed in the whole population. INTERPRETATION: Alterations of neurovascular coupling occur early in CADASIL and can be assessed by ASL-fMRI using a simple marker of vascular dysfunction.

17.
Elife ; 72018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561263

RESUMO

Resting-state networks offer a unique window into the brain's functional architecture, but their characterization remains limited to instantaneous connectivity thus far. Here, we describe a novel resting-state network based on the delayed connectivity between the brain and the slow electrical rhythm (0.05 Hz) generated in the stomach. The gastric network cuts across classical resting-state networks with partial overlap with autonomic regulation areas. This network is composed of regions with convergent functional properties involved in mapping bodily space through touch, action or vision, as well as mapping external space in bodily coordinates. The network is characterized by a precise temporal sequence of activations within a gastric cycle, beginning with somato-motor cortices and ending with the extrastriate body area and dorsal precuneus. Our results demonstrate that canonical resting-state networks based on instantaneous connectivity represent only one of the possible partitions of the brain into coherent networks based on temporal dynamics.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Descanso/fisiologia , Estômago/fisiologia , Adulto , Algoritmos , Encéfalo/anatomia & histologia , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/anatomia & histologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Estômago/inervação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA